Visfatin induces the apoptosis of endothelial progenitor cells via the induction of pro-inflammatory mediators through the NF-κB pathway
نویسندگان
چکیده
Endothelial progenitor cells (EPCs) are an independent factor predicting cardiovascular events. Visfatin plays an important role in the pathogenesis of various metabolic disorders. In this study, we examined the effects of visfatin on the apoptosis of EPCs and the mechanisms underlying these effects. Cultured EPCs pre-treated with various concentrations of visfatin, FK866 (visfatin inhibitor) and BAY11-7085 [referred to as BAY11; nuclear factor-κB (NF-κB) inhibitor] were used to investigate the association between visfatin and EPC apoptosis. Following treatment with visfatin for 48 h, the EPCs exhibited a dose-dependent increase in apoptosis and an upregulated expression of Bax, caspase-3 and NF-κB at both the mRNA and protein level, and a decreased protein expression of Bcl-2. Compared with the untreated control group, the increase in EPC apoptosis, as well as in Bax and caspase-3 expression was significant following treatment with 150 ng/ml visfatin, which also induced a dose-dependent and significant increase in the protein expression of interleukin-6 (IL-6) and intercellular adhesion molecule-1 (ICAM-1). All the visfatin-induced effects were suppressed by pre-treatment with FK866. Pre-incubation of the EPCs with BAY11 for 1 h followed by treatment with visfatin (150 ng/ml) for 48 h also abolished visfatin-induced apoptosis; it also abolished the promoting effects of visfatin on the expression of caspase-3, Bax, ICAM-1 and IL-6, and its suppressive effects on the protein expression of Bcl-2. On the whole, our data indicate that visfatin induces EPC apoptosis by increasing the expression of pro-inflammatory mediators partly through the regulation of NF-κB.
منابع مشابه
VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملThe effect of down-regulation of CCL5 on lipopolysaccharide-induced WI-38 fibroblast injury: a potential role for infantile pneumonia
Objective(s): Aberrant expression of CCL5 has been found in several kinds of inflammatory diseases, and the roles of CCL5 in these diseases have also been reported. However, the role of CCL5 in infantile pneumonia is still unclear. Thus, the function and acting mechanism of CCL5 in the in vitro model of infantile pneumonia were researched in this study. Materials and Methods: Human fetal lung f...
متن کاملMonascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway
Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...
متن کاملAtorvastatin antagonizes the visfatin-induced expression of inflammatory mediators via the upregulation of NF-κB activation in HCAECs
The present study investigated whether atorvastatin antagonizes the visfatin-induced expression of inflammatory mediators in human coronary artery endothelial cells (HCAECs). Several analysis methods, such as reverse transcription-quantitative polymerase chain reaction, western blot analysis and H2DCFDA incubation, were used in the present study. The data showed that atorvastatin decreased the ...
متن کاملAnti-proliferative effect and apoptotic induction of sesquiterpene lactone parthenolide in a human breast cancer cell line
Parthenolide is a secondary metabolite, which naturally occurs in the feverfew plant and is responsible for its healing power. The potential of parthenolide in inhibition of cancer cell growth, alone or in combination with other anti-cancer therapeutics, have been studied in several laboratories. In this study, the effect of extracted parthenolide on the expression of seven pro-apoptotic genes,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 40 شماره
صفحات -
تاریخ انتشار 2017